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We study the S=1 /2 Heisenberg antiferromagnet on a square lattice with nearest-neighbor and plaquette
four-spin exchanges �introduced by A. W. Sandvik, Phys. Rev. Lett. 98, 227202 �2007�.� This model undergoes
a quantum phase transition from a spontaneously dimerized phase to Néel order at a critical coupling. We show
that as the critical point is approached from the dimerized side, the system exhibits strong fluctuations in the
dimer background, reflected in the presence of a low-energy singlet mode, with a simultaneous rise in the
triplet quasiparticle density. We find that both singlet and triplet modes of high density condense at the
transition, signaling restoration of lattice symmetry. In our approach, which goes beyond mean-field theory in
terms of the triplet excitations, the transition appears sharp; however since our method breaks down near the
critical point, we argue that we cannot make a definite conclusion regarding the order of the transition.
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I. INTRODUCTION

Problems related to quantum criticality in quantum spin
systems are of both fundamental and practical importance.1

Numerous materials, such as Mott insulators, exhibit either
antiferromagnetic �Néel� order or quantum-disordered �QD�
�spin-gapped� ground state depending on the distribution of
Heisenberg exchange couplings and geometry. External per-
turbations �such as doping or frustration� can also cause
quantum transitions between these phases. Systems with spin
1/2 are indeed the most interesting as they are the most sus-
ceptible to such transitions. It is well understood that the
quantum transition between a quantum-disordered and a
Néel phase is in the O�3� universality class,1 where a triplet
state condenses at the quantum critical point �QCP�.

A recent exciting development in our theoretical under-
standing of QCPs originated from the proposal that if the QD
phase spontaneously breaks lattice symmetries �e.g., is char-
acterized by spontaneous dimer order�, and the transition is
of second order, then exactly at the QCP spinon deconfine-
ment occurs, i.e., the excitations are fractionalized.2 It is as-
sumed that the Hamiltonian itself does not break the lattice
symmetries �i.e., does not have “trivial” dimer order caused
by some exchanges being stronger than the others�. We use
the terms “dimer order” and “valence-bond solid �VBS� or-
der” interchangeably. It is expected that the dimer order van-
ishes exactly at the point where Néel order appears, i.e., there
is no coexistence between the two phases. Deconfinement
thus is intimately related to disappearance of VBS order;
indeed if the latter persisted in the Néel phase it would be
impossible to isolate a spinon, as “pairing” would always
take place. Spontaneous VBS order driven by frustration has
been a common theme in quantum antiferromagnetism,3 al-
though its presence and the nature of criticality in specific
models, such as the two-dimensional square-lattice frustrated
Heisenberg antiferromagnet, is still somewhat controversial.4

It would be particularly useful to apply unbiased numerical
approaches, such as the quantum Monte Carlo �QMC�
method, to study frustrated spin models; however due to the
fatal “sign” problem,5 frustrated Heisenberg systems are be-
yond the QMC reach.

In a recent study, the QMC method was applied to a four-
spin exchange quantum spin model without frustration,
which was shown to exhibit columnar dimer VBS order and
a magnetically ordered phase with a deconfined QCP sepa-
rating them.6 These conclusions were later confirmed by fur-
ther QMC studies.7 Extensions of the model, which include,
for example, additional �six-spin� interactions, provide addi-
tional support for a continuous QCP.8 A different VBS pat-
tern �plaquette order� was also proposed for the four-spin
exchange model.9 At the same time, the nature of the quan-
tum phase transition was challenged in Refs. 10 and 11,
where arguments were given that the transition is in fact of
�weakly� first order.

It is the objective of the present work to study the Sandvik
model6 by approaching the quantum transition from the
dimer VBS phase. Our approach uses as a starting point a
symmetry broken state �i.e., one out of four degenerate VBS
configurations�, and we thus must search for signatures that
the system attempts to restore the lattice symmetry at the
QCP. Even though full restoration is impossible within the
present framework, we find a QCP characterized by conden-
sation of triplet modes of high density; this is, in contrast to
the conventional situation when the condensing particles are
in the dilute Bose gas limit. The high density itself is due to
the presence of a singlet mode that condenses at the QCP and
reflects the strong fluctuations of the background dimer or-
der. The above effects lead to the vanishing of the VBS order
parameter; at the same time our method, which accounts for
the strong fluctuations, leads to a rather sharp phase transi-
tion. It appears that we cannot draw a definite conclusion
about the order of the transition because in the vicinity of the
QCP the triplon density increases uncontrollably, suggesting
that other states �such a plaquette states and larger clusters�
are strongly admixed into the ground state. This is generally
expected in a situation where the lattice symmetry is restored
at the quantum critical point.

The model under consideration is

H = J �
�a,b�

Sa . Sb − K �
a,b,c,d

�Sa · Sb��Sc · Sd� , �1�

where J�0, K�0, and all spins are S=1 /2. Consider the
numbers 1, 2, 3, and 4 in Fig. 1. The summation in the
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four-spin term is over indexes �a ,b�= �1,2�, �c ,d�= �3,4�
and �a ,b�= �1,4�, �c ,d�= �2,3� on a given plaquette, and
then summation is made over all plaquettes.12 The range of
parameters explored in Ref. 6 is K /J�2 and the QCP is at
�K /J�c�1.85. Our coupling notation is slightly different
from the one used in Refs. 6 and 7; the coupling K is related
to the parameter Q �Refs. 6 and 7� via K=Q / �1+Q / �2J��,
and the critical point in that notation is �Q /J�c�25. The
dimerization pattern is proposed to be of the “columnar”
type, as shown in Fig. 1. Four such configurations exist. We
will assume a configuration of this type, will show that it is
stable at K /J�1, and will then search for an instability to-
ward the Néel state as K /J decreases.

The rest of the paper is organized as follows. In Sec. II we
present results based on the mean-field �MF� approach in
terms of the dimer �triplon� operators. In Sec. III we extend
our treatment beyond mean field, and even further in Sec. IV,
where we also take into account low-energy singlet two-
triplon excitations. Section V contains our conclusions.

II. MEAN-FIELD TREATMENT

We start by rewriting Eq. �1� in the bond-operator
representation,13 where on a dimer i, the two spins forming it
are expressed as: S1,2

� = 1
2 ��si

†ti�� ti�
† si− i����ti�

† ti�� and
si

† , ti�
† , �=x ,y ,z create a singlet and triplet of states. We

refer to the triplet �S=1� quasiparticle, ti�
† , as “triplon.” The

bold indexes i , j ,m , l label the dimers �see Fig. 1�. Summa-
tion over repeated Greek indexes is assumed, unless indi-
cated otherwise.

The hard-core constraint, si
†si+ ti�

† ti�=1, must be enforced
on every site, which at the MF level can be done by intro-
ducing a term in the Hamiltonian, −	�i�s2+ ti�

† ti�−1�. Then
	 and the �condensed� singlet amplitude s	�si�, are deter-
mined by the MF equations.13 We obtain at the quadratic
level, in momentum representation

H2 = �
k,�

Aktk�

† tk� +
Bk

2
�tk�

† t−k�
† + H.c.�� , �2�

where

Ak = J/4 − 	 + s2�
k
− + K/2� + s4��k� ,

Bk = s2
k
+ + s4��k� ,


k
� = − �J/2�cos kx + �J � K/4�cos ky . �3�

The four-spin interaction from Eq. �1� acting between two
dimers �e.g., i , j in Fig. 1� contributes to the “on-site” gap

and hopping �
k
−� via Ak, as well as to the quantum fluctua-

tions term Bk. The part involving four dimers has been split
in a mean-field fashion, leading to the Hartree-Fock self-
energy

− ��k�/K = 2�x cos kx + 2�y cos ky + �xy cos kx cos ky

�4�

with

�x =
1

3�
�

�ti�
† tm� + ti�

† tm�
† � , �5�

where i ,m are neighboring dimers in the x �horizontal� di-
rection �Fig. 1� and similarly for the y and the diagonal con-
tributions. The triplon dispersion is ��k�=�Ak

2 −Bk
2 and has a

minimum at the Néel ordering wave-vector kAF= �0,�
�since we work on a dimerized lattice�. The ground-state
energy is then easily computed,

EGS = E0 + �H2� , �6�

where

E0/N = −
3

4
�Js2 + Ks4� + 	�− s2 + 1�+ �7�

3Ks4�x
2 + �y

2 +
1

2
�xy

2 � , �8�

and

�H2� =
3

2�
k

���k� − Ak� . �9�

The mean-field equations require a numerical minimization
of EGS with respect to the parameters �	 ,s ,�x ,�y ,�xy�. This
amounts to the self-consistent Hartree-Fock approximation
for ��k�. The result for the triplon gap �=��kAF� is pre-
sented in Fig. 2 �black curve�.

The MF result �K /J�c�0.6 substantially underestimates
the location of the critical point, compared to the QMC cal-
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FIG. 1. �Color online� Dimer pattern in the quantum-disordered
�VBS� phase, K /J� �K /J�c.
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FIG. 2. �Color online� Triplon excitation gap �=��kAF� in vari-
ous approximations. The point �→0 corresponds to transition to
the Néel phase.
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culations, where �K /J�c�1.85.6,7 Interestingly, if one solves
the MF equations ignoring both the hard core and the ��k�,
one finds �K /J�c=1. Physically, in the full MF, the hard-core
contribution increases the gap �and hence the stability of the
dimer phase� while at the same time suppressing the antifer-
romagnetic fluctuations �which favor the Néel state�.

We also note that a recent �hierarchical� MF treatment
based on the plaquette ground state also underestimates very
strongly the QCP location ��K /J�c�1 �Ref. 9��, similarly to
our result. In our view this means that both mean-field ap-
proaches are not sufficient to attack the present problem,
where fluctuations are apparently very strong. We choose to
accept that the numerical QMC result gives the most accu-
rate determination of the QCP, and therefore in what follows
we extend our treatment in several directions beyond mean-
field theory.

III. BEYOND MEAN FIELD: THE DILUTE TRIPLON GAS
APPROXIMATION

A more accurate treatment of fluctuations is possible by
taking into account the hard-core constraint beyond mean
field. One can set the singlet amplitude s=1 in the previous
formulas but introduce an infinite on-site repulsion between
the triplons, U�i,��t�i

† t�i
† t�it�i , U→�. As long as the triplon

density �determined by the quantum fluctuations� is low, an
infinite repulsion corresponds to a finite scattering amplitude
between excitations and can be calculated by resumming lad-
der diagrams for the scattering vertex.14 This leads to the
effective triplon-triplon vertex ��k ,�� which was previously
calculated,15

�−1�k,�� = �
q

uq
2uk−q

2

��q� + ��k − q� − �
+ 
 u → v

� → − �
� .

�10�

This vertex in turn affects the triplon dispersion via �what we
call� the Brueckner self-energy15

�B�k,�� = 4�
q

vq
2��k + q,� − ��q�� . �11�

The corresponding parameters in the quadratic Hamiltonian
�2� in this case are

Ak = J + 2K�1 − 4nt/3� + 
k
− + ��k� + �B�k,0� ,

Bk = 
k
+ + ��k� . �12�

The Bogolubov coefficients are defined in the usual way uk
2

=1 /2+Ak / �2��k��=1+vk
2. The various terms in ��k� can be

expressed through them: for example, �x=�k�vk
2

+vkuk�cos kx, and so on. The density of triplons is nt
= �ti�

† ti��=3�kvk
2. In addition, the renormalization of the qua-

siparticle residue, Zk
−1=1−��B�k ,0� /��, implies the replace-

ment uk→�Zkuk , vk→�Zkvk in all the formulas,15 and the
renormalized spectrum ��k�=Zk�Ak

2 −Bk
2.

An iterative numerical evaluation of the spectrum using
the above equations, which amounts to solution of the Dyson
equation, leads to the result shown in Fig. 2 �blue curve�. The

above approach appears to be well justified since the quasi-
particle density nt�0.1. The resulting critical point is still in
the “weak-coupling” regime K /J�1, with about 100% de-
viation from the QMC result ��K /J�c�1.85�. This suggests
that the on-site triplon fluctuations are not the dominant
cause for the disagreement with the QMC results; thus we
proceed to include two-particle fluctuations �in the triplon
language�, which amounts to including dimer-dimer correla-
tions.

IV. STRONG FLUCTUATIONS IN THE SINGLET
BACKGROUND: QCP BEYOND THE DILUTE TRIPLON

GAS APPROXIMATION

It is clear that “nonperturbative” effects are responsible
for driving the QCP toward the “strong-coupling” region
K /J�2. To proceed we make two improvements to the pre-
vious low-density, weak-coupling theory.

First, we take into account fluctuations in the singlet back-
ground, i.e., the manifold on which the triplons are built and
interact. The main effect originates from the action of the
four-spin K term from Eq. �1� on two dimers, e.g., i , j in Fig.
1. Part of this action has led to the on-site gap 2K in Eq. �12�,
favoring dimerization. However, a strong attraction between
the two dimers is also present, since the K term is symmetric
with respect to the index pair exchange
�1,2��3,4�↔ �1,4��2,3�, leading to a “plaquettization” ten-
dency as well. In the triplon language this is manifested by
formation of bound states of two triplons due to their
nearest-neighbor interactions

H4,y = �
�i,j�y,��

��1t�i
† t�j

† t�it�j + �2t�i
† t�j

† t�it�j + �3t�i
† t�j

† t�it�j� ,

�1 = −
K

8
+

J

2
, �2 = −

K

8
−

J

2
, �3 = −

5K

4
. �13�

We also checked that on the perturbative �Hartree-Fock�
level, the effect of this term on Eqs. �3� and �12� was negli-
gible �and we did not write it explicitly�.

An intuitive way of taking into account the effect of two-
triplon bound states �with total spin S=0� on the one-triplon
spectrum, is to work in the “local” approximation. This
means effectively neglecting the triplon dispersion and di-
rectly evaluating the ladder series that renormalizes the quan-
tum fluctuation term Bk in Eq. �2�, corresponding to emission
of a pair of triplons with zero total momentum. This is illus-
trated graphically in Fig. 3, with the result

H
4

H
4

k

−k y y

FIG. 3. �Color online� Renormalization of quantum fluctuations
by resummation of a ladder series with Eq. �13� at the vertices.

QUANTUM PHASE TRANSITION IN THE FOUR-SPIN… PHYSICAL REVIEW B 80, 174403 �2009�

174403-3



Bk = −
J

2
cos kx + � J + K/4

1 −
���

��E�
�cos ky + ��k� ,

� 	 �1 + 3�2 + �3 = − J −
7

4
K , �14�

where � is the effective attraction of two triplons with total
S=0, and

�E = 2J +
11

4
K �15�

is the energy of two �noninteracting� triplons on adjacent
sites. This calculation is justified for K /J�1 and leads to an
increase in the quantum fluctuations, and from there to al-
most doubling of the triplon density nt �see Fig. 4 below�. It
contributes significantly to the shift of the QCP.

We can go beyond the local approximation by solving the
Bethe-Salpeter equation for the bound state, formed due to
the attraction, Eq. �13�, and taking into account the full
triplon dispersion. The equation for the singlet bound-state
energy Es�Q�, corresponding to total pair momentum Q is

1 = 2��
q

uq
4 cos2 qy

Es�Q� − ��Q/2 + q� − ��Q/2 − q�
. �16�

Here we have, for simplicity, written only the main contri-
bution to pairing �Eq. �13�� in the limit K /J�1, and have
neglected the on-site repulsion �which leads to slightly
diminished pairing�, as well as small pairing due to the
exchange J from dimers in the x direction on Fig. 1. It is
easily seen that the lowest energy corresponds to Q=0;
we define from now on Es	Es�Q=0�. The binding energy
is �=2�−Es, where � is the one-particle gap. The
bound-state wave function corresponding to Es is ���
=��,i,j,qy

�qy
eiqy�i−j�t�i

† t�j
† �0�. In the local limit �nearest-

neighbor pairing�, �qy
=�2 cos qy.

Second, we have made subtle changes to the resummation
procedure concerning the quasiparticle renormalization Z
based on both formal and physical grounds. On the one hand
it is clear that in the Brueckner approximation �Eq. �11��,
where the self-energy is linear in the density ��B�nt�, the
dependence of the vertex �−1 on density is beyond the accu-
racy of the calculation, meaning one can put uq=1, vq=0 in
Eq. �10�, instead of determining them self-consistently. This
leads to a decreased influence of the hard-core �B �which
favors the dimer state� on the Hartree-Fock self-energy ��k�
from Eq. �4� �which favors the Néel state�. It is indeed the
mutual interplay between �B�0 and ��k��0, that deter-
mines the exact location of the QCP in the course of the
Dyson’s equation iterative solution. While in the weak-
coupling regime K /J�1, �B always dominates, in the
strong-coupling region K /J�2, ��k� starts playing a signifi-
cant role, since parametrically ��Knt. It is physically con-
sistent that in the region where singlet fluctuations in the
dimer background are strong, the hard-core effect is less im-
portant, i.e., in effect the kinematic hard-core constraint is
“relaxed.” We also observe that in typical models with QCP
driven by explicit dimerization, such as the bilayer model,
the described difference in approximation schemes makes a
very small difference on the location of the QCP,16 since
those models are always in the weak-coupling regime, domi-
nated by the hard-core repulsion of excitations on a nonfluc-
tuating dimer configuration. The purpose of the above rather
technical diversion is to emphasize that care has been taken
to take into account as accurately as possible the effect of the
�low-energy� two-particle spectrum on the one-particle
triplon gap.

Our results are summarized in Figs. 2 and 4 �red line� for
the gap. The critical point is shifted toward �K /J�c�2.16 �in
much better agreement with QMC data�, with a very strong
increase in the density toward Kc. This translates into a de-
crease in the dimer order, as measured by the two dimer
order parameters that we compute from the expressions:
Dx= ��S3 ·S4�− �S5 ·S4��= �− 3

4 +nt+
3
4�x� and Dy = ��S3 ·S4�

− �S1 ·S4��= �− 3
4 +nt−

3
4�y�. The spins are labeled as in Fig. 1.
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The singlet bound-state energy Es�0� also tends toward zero
at the QCP with the corresponding binding energy remaining
quite large � /J�1. All these effects point toward a tendency
of the system to restore the lattice symmetry, although it is
certainly clear that as the critical point is approached, our
approximation scheme �low density of quasiparticles� breaks
down �dashed lines on figures�. We should point out that the
sharpness of variation near Kc is not due to divergence in any
of the self-energies but is a result of rapid cancellation at
high orders �i.e., iterations in the Dyson equation�. In fact
cutting off our iterative procedure at finite order gives a
smooth curve, suggesting that additional classes of diagrams
become important �although in practice their classification is
an insurmountable task�. The merger of singlet and triplet
modes, which we find near the QCP, in principle, reflects a
tendency toward quasiparticle fractionalization �spinon de-
confinement� and is also found in the one-dimensional
Heisenberg chain with frustration,17 where spinons are al-
ways deconfined.

Since we are now dealing with a situation where the den-
sity is not very small nt�0.2, it is prudent to check how the
next order in the density may affect the above results. For
example, at second order in the density, the self-energy ��k�
changes by amount ���k�, i.e., one has to add this contribu-
tion to the right-hand side of Eq. �12�, namely,

Ak → Ak + ���k�, Bk → Bk + ���k� . �17�

We have found

���k� = − 2K�Qx
2 − Px

2�cos kx + 2K�Qy
2 − Py

2�cos ky

− K�Qxy
2 − Pxy

2 �cos kx cos ky �18�

and the following definitions are used

Px = �1/3��
�

�ti�
† tm�� = �

k
vk

2 cos kx,

Qx = �1/3��
�

�ti�tm�� = �
k

ukvk cos kx, �19�

and similarly for the other directions, for example, Py
=�kvk

2 cos ky, Pxy =�kvk
2 cos kx cos ky, etc. After including

these expressions in our numerical iterative procedure, we
have found that the QCP is shifted by a very small amount,
and the overall picture, as summarized in Figs. 2 and 4 �red
line�, still stands.

V. CONCLUSIONS

In conclusion, we have shown that the QCP between the
Néel and the dimer state in the model, Eq. �1�, is of uncon-
ventional nature, in the sense that it is characterized by the

presence of both triplet and singlet low-energy modes. Near
the QCP, whose location ��K /J�c�2.16� we find in fairly
good agreement with recent QMC studies, the system exhib-
its: �1� strong rise of the triplon excitation density, due to
increased quantum fluctuations, �2� corresponding strong de-
crease �and ultimately vanishing� in the dimer order at the
QCP, and �3� vanishing of a singlet energy scale, related to
the destruction of the dimer “columns” in Fig. 1. The above
effects are all related and influence strongly one another,
ultimately meaning that the QCP reflects strong fluctuations
and cannot be described in a mean-field theory framework.
These results also suggest a desire of the system to restore
the lattice symmetry at the QCP, as found in the QMC
studies.6

At the same time all our improvements beyond mean-field
theory have also resulted in a very sharp transition, which
appears to be first order. However in our view our approach
is not capable of addressing correctly the issue on the order
of the phase transition, basically because once we take the
strong �inter� dimer fluctuations in to account, the triplon
density starts rising quickly beyond control. This is in a cer-
tain sense natural in a situation where the system wants to
restore the lattice symmetry at the QCP and thus the ground
state acquires strong admixture of plaquette, etc. fluctuations
as the dimers begin to “disappear.” This is also manifested in
the fact that our procedure is sensitive to the number of it-
erations in the Dyson equation; all presented results are for
an “infinite” number of iterations, so that a fixed point is
reached, but cutting off the procedure results in a smoother
behavior and a shift of the QCP, which becomes iteration
dependent. We have not previously encountered such volatile
behavior in any other spin model with a dimer to magnetic
order transition. Since iterations translate into accounting of
more and more fluctuations, the sensitivity of the results
seems to mean that the situation starts spiraling out of con-
trol near the QCP, quite likely because classes of fluctuations
become important that are not included in the dimer descrip-
tion, such as longer-range correlations, etc. All this suggests
that the triplon quasiparticle description breaks down near
the QCP which indeed appears natural in a model where
spinon deconfinement is expected to take place at the QCP.6

On the other hand, if we put aside the arguments that our
approach is not reliable near the QCP, the natural conclusion
would be that the transition is first order.
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